
Journal of Magnetic Resonance 211 (2011) 67–73
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
GPU accelerated Monte Carlo simulation of pulsed-field gradient NMR experiments

Christopher A. Waudby ⇑, John Christodoulou
Institute of Structural and Molecular Biology, University College London and Birkbeck College, WC1E 6BT, UK

a r t i c l e i n f o a b s t r a c t
Article history:
Received 8 February 2011
Revised 7 April 2011
Available online 23 April 2011

Keywords:
CUDA
GPGPU
Parallel processing
Restricted diffusion
PGSE
1090-7807/$ - see front matter � 2011 Elsevier Inc. A
doi:10.1016/j.jmr.2011.04.004

⇑ Corresponding author.
E-mail address: c.waudby@ucl.ac.uk (C.A. Waudby
The simulation of diffusion by Monte Carlo methods is often essential to describing NMR measurements
of diffusion in porous media. However, simulation timescales must often span hundreds of milliseconds,
with large numbers of trajectories required to ensure statistical convergence. Here we demonstrate that
by parallelising code to run on graphics processing units (GPUs), these calculations may be accelerated by
over three orders of magnitude, opening new frontiers in experimental design and analysis. As such cards
are commonly installed on most desktop computers, we expect that this will prove useful in many cases
where simple analytical descriptions are not available or appropriate, e.g. in complex geometries or
where short gradient pulse approximations do not hold, or for the analysis of diffusion-weighted MRI
in complex tissues such as the lungs and brain.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

NMR pulsed-field gradient (PFG) experiments such as the
pulsed-gradient spin-echo (PGSE) are a powerful tool for the char-
acterisation of molecular transport processes in a wide range of
systems [1–3]. Porous media, such as rocks, foams, cells and more
complex tissues, are of importance to many fields, from geology to
biology, and PFG NMR experiments are capable not just of charac-
terising diffusion within such media, but also of revealing geomet-
ric information about the environment, such as pore sizes and
tortuosity [2,4–9]. Moreover, these methods form the basis of a
variety of diffusion-weighted magnetic resonance imaging (MRI)
techniques, ranging from a simple contrast mechanism to diffu-
sion-tensor imaging and neural tractography [10–13].

The results of PFG experiments can be expressed analytically in
a closed form only for a small number of relatively simple pulse se-
quences and confining geometries. Often simplifications such as
short gradient pulse or Gaussian phase approximations are re-
quired [2,3,14], yet there are many interesting cases where these
approximations do not hold [15–19]. Rigorous analytical solutions
may be computed using matrix formulations of the Bloch–Torrey
equation (describing the magnetisation of diffusing spins) [3,20–
23], but for complex geometries this still remains a complex task.
An attractive alternative therefore remains the simulation of a
large number of diffusing spins, in order to calculate directly the
expected experimental results [15,24–26].

The echo attenuation or relative intensity measured by a PFG
experiment, E = I/I0, is the ensemble average of the phase, u,
ll rights reserved.

).
accumulated by a spin due to the magnetic field experienced
along its trajectory. As virtually all experiments, including spin
and stimulated echos, are designed to refocus the evolution of
magnetisation due to the static field, we assume phase evolution
is determined only by the pulsed-gradient field, G(t). To account
for the effect of 180� pulses, this is conveniently combined with
the coherence order, n, as an effective field Geff(t) = n(t) G(t)
[2,3,20]. Thus, the phase accumulated by a single spin, over a
time T, is:

/ ¼
Z T

0
cGeff ðtÞrðtÞdt ð1Þ

where c is the gyromagnetic ratio and r(t) describes the trajectory
of the spin. The observed echo intensity is described by the ensem-
ble-averaged phase:

E ¼ hei/i ¼ hcos /i þ ihsin /i ð2Þ

The above description of PFG experiments applies equally to
simulations as to the physical experiment itself. In this case, N dif-
fusive trajectories may be generated by a simple Monte Carlo algo-
rithm, in which random displacements along each dimension
during a time step dt are sampled from a Gaussian with variance
2Ddt. The implementation of boundary conditions, essential to
the description of any confined system, is discussed further below.
The average in Eq. (2) is to be taken over realisations of the diffu-
sive trajectories of the particles, and also their initial positions and,
for an isotropic sample, orientations of the surrounding geometry.
In the absence of flow, the imaginary component (phase) is zero, so
for many practical purposes it is only required to compute the
cosh/i term of Eq. (2) to calculate the echo attenuation. The statis-
tical uncertainty is the standard error of the mean:

http://dx.doi.org/10.1016/j.jmr.2011.04.004
mailto:c.waudby@ucl.ac.uk
http://dx.doi.org/10.1016/j.jmr.2011.04.004
http://www.sciencedirect.com/science/journal/10907807
http://www.elsevier.com/locate/jmr


68 C.A. Waudby, J. Christodoulou / Journal of Magnetic Resonance 211 (2011) 67–73
rE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcos2 /i � hcos /2i

N

s
ð3Þ

A fundamental drawback with simulation approaches to the
analysis of experiments is that a large number of trajectories (typ-
ically 105–106) are required to reduce statistical errors, the relative
magnitude of which scale as N�1/2. The simulation algorithm itself
however, is an example of an embarrassingly parallel problem, due
to the absence of interactions between individual trajectories.
Graphics processing units (GPUs) are highly optimised for such
parallel calculations, and modern hardware can process several
hundreds of such problems (‘threads’) simultaneously. Recent
years have seen an effort, loosely termed ‘general-purpose com-
puting on the GPU’ (GPGPU), to harness this low-cost, high-perfor-
mance hardware for scientific calculations [27], and a number of
libraries such as OpenCL and Compute Unified Device Architecture
(CUDA) have been developed to interface in relatively high-level
languages such as C to the GPU hardware [28,29]. Here we show
that by performing computation on the GPU, the Monte Carlo sim-
ulation of PFG NMR experiments may be accelerated by up to three
orders of magnitude, opening up new possibilities in the design
and analysis of experiments.
Fig. 1. Block diagram of the simulation algorithm, indicating the main program
flow on the CPU and calculations performed on the GPU.
2. Implementation

The software has been implemented in C, using the CUDA li-
brary to interface with NVIDIA GPUs [28]. The code is freely avail-
able to download from the author’s website (http://www.smb.
ucl.ac.uk/christodoulou/software). The program flow is outlined
in Fig. 1, depicting particularly the division of activities between
the CPU and the GPU. For benchmarking and testing purposes,
identical ‘gold-standard’ CPU implementations of GPU code have
been written to provide a CPU-based reference. These were found
particularly useful when implementing new algorithms, as it can
be more complex to debug code that is running on a GPU.

There are a variety of possible implementations of boundary
conditions in the simulation of restricted diffusion [30–33]. In
the common case of reflecting (zero-flux) boundaries the most de-
tailed approach would be, on detecting that a trajectory has exited
the allowed region, to compute exactly the final position following
(possibly multiple) specular reflection(s) from the boundary sur-
face [30]. However, not only are these calculations highly demand-
ing for arbitrarily defined geometries, but the detection and
handling of multiple reflections gives rise to branches and loops
within the GPU kernel. These are highly inefficient to execute, as
the structure of the GPU multiprocessor demands that simulta-
neously executed ‘warps’ of 32 threads must follow the same pro-
gram flow (although a small number of branches can be handled
through predicated execution) [34]. Where this is not possible
threads must be executed sequentially, and so a loop in a single
thread can force the serial execution of the entire warp, destroying
the expected performance gain from parallelism. We have there-
fore implemented an alternative ‘rejection sampling’ algorithm
whereby the particle position is updated only if the new position
is within an allowed region [31,32]. Not only is this computation-
ally efficient, but the implementation of new geometries is reduced
to defining a Boolean function that determines whether a given po-
sition is allowed or disallowed. Additionally, under steady-state
conditions typical of diffusion measurements, there are no artifac-
tual concentration gradients near reflecting boundaries [33]. Of
course, it is important to ensure that the RMS displacement per
time step, dr ¼

ffiffiffiffiffiffiffiffiffiffiffi
6Ddt
p

, is much smaller than the smallest geometric
features, and so when implementing new geometries we recom-
mend verifying that simulation results do not change when the
time step is varied.
Surface relaxation, i.e. absorbing or partially absorbing bound-
aries, is also implementable using a rejection method for boundary
conditions. A binary flag is associated with each trajectory, and
upon collisions with the boundary this flag may, with a certain
probability, be set to indicate that ‘spin-death’ has occurred and
that this trajectory should not contribute to calculations of the
echo attenuation. In the limit of weak surface relaxation, the killing
probability is linearly proportional to the surface relaxivity [35],
while in the opposite case of completely absorbing boundaries
spin-death occurs with probability one. In general, the simulation
of surface relaxation effects by random walk methods is computa-
tionally more intensive than similar simulations with reflecting
boundaries. This is in part due to errors in the concentration gradi-
ents near surfaces, which arise as a consequence of the finite size
simulation steps, irrespective of whether boundaries are imple-
mented with a rejection algorithm or by more detailed calculation
of specular reflections [33]; and also due to the increased statistical
uncertainty from sampling only the smaller population of ‘living’
spins. Thus, both smaller time steps and a greater number of par-
ticles may need to be simulated to reach an equivalent level of
accuracy to simulations with reflecting boundaries, and in these
cases acceleration with the GPU may be particularly useful.

Random number generation is essential to several aspects of the
simulation process. Firstly, random initial positions were gener-
ated on the CPU, with rejection sampling to ensure boundary con-
ditions are not violated, and then transferred to the GPU memory.

http://www.smb.ucl.ac.uk/christodoulou/software
http://www.smb.ucl.ac.uk/christodoulou/software


C.A. Waudby, J. Christodoulou / Journal of Magnetic Resonance 211 (2011) 67–73 69
Secondly, an extremely large number of random displacements
must be sampled by the GPU from a Gaussian distribution with
variance 2Ddt (where D is the diffusion coefficient and dt is the
simulation time step). Random numbers uniformly distributed in
the unit interval were generated within each thread by an XOR-
shift algorithm [36,37] and transformed into Gaussian variates
using the Box–Muller transform (which although numerically
intensive avoids branches and loops, resulting in efficient perfor-
mance on the GPU) [38]. Finally, while in the first instance three-
dimensional trajectories are generated in a fixed (shared) reference
frame, to reflect the isotropic nature of most NMR samples we have
provided the option to rotate each three-dimensional trajectory by
a random (isotropically distributed) angle prior to computation of
the phase. This is also equivalent to applying gradients in a random
direction for each spin, and simplifies the task of specifying new
geometries, as only the local environment need be described. Rota-
tions are performed using randomly generated rotation matrices
[38] computed on the CPU beforehand and stored locally within
each thread.
X

Gz

Geff

δ τ

X

Gz

Geff

T

A

B

Δ

Fig. 2. Pulse sequences used for validation of the simulations, showing the effective
gradient profile Geff after including the effect of 180� pulses. (A) Pulsed-gradient
spin-echo with trapezoidal gradients having ramp time s and total area Gd. (B)
Constant gradient spin-echo with echo time T and gradient strength G.
2.1. Numerical precision and stability

The CUDA library provides two options for the evaluation of
mathematical functions such as square root, sine and cosine: ‘li-
brary’ functions which are expanded by the compiler into longer
sequences of instructions with guaranteed error bounds, and
‘intrinsic’ hardware-optimised functions with greatly improved
performance, but potentially reduced accuracy [34]. We have eval-
uated the use of fast intrinsic functions in the random number gen-
erator, and by comparing the results of simulations using the fast,
intrinsic functions against results from the ‘gold-standard’ CPU
implementation, any reduction in simulation accuracy is not
detectable within the typical statistical uncertainty of repeated
simulations. However, the more accurate library functions are used
in the final calculations of phase averages (Eqs. (2) and (3)), where
the calculation cost is not a critical factor.

When analysing the numerical stability of an algorithm, it is
important to consider the precision with which the raw numeric
data is stored and manipulated by the hardware. If calculations
are not performed with sufficient precision, rouding errors can oc-
cur: e.g. when adding a small number to a large number, the large
number may not have sufficient precision to accurately represent
the small number. GPUs have historically operated with single-
precision floating point arithmetic, where each variable is repre-
sented by 32 bits (4 bytes) with 8 bits encoding the exponent
and 24 encoding the significand, giving a precision of log10

224 � 7 decimal digits. By contrast, computations on the CPU are
commonly performed with double-precision arithmetic, with 11
bits encoding the exponent and 53 encoding the significand, giving
a precision of approximately 16 decimal digits and virtually elim-
inating the possibility of rounding errors. While modern genera-
tions of NVIDIA cards (compute capabilities of 1.3 or greater
[28,34]) can also perform double-precision arithmetic, this can
come at a substantial performance cost. For our purposes, we find
that single-precision arithmetic is sufficient provided that care is
taken to avoid rounding errors when evaluating repeated summa-
tions (i.e. when small numbers may be added to large numbers).
These might arise in the accumulation of phase within each trajec-
tory, and particularly in the summations required to compute aver-
ages at the end of the simulation. The former problem has been
addressed by using the Kahan summation algorithm [39], whereby
a compensator variable is additionally computed to correct for
small errors – effectively, using two single-precision variables to
approximate a double-precision calculation, at a minimal perfor-
mance cost.
Loss of precision in the final summations for computing phase
averages (Eqs. (2) and (3)) may also be addressed using the Kahan
summation algorithm. However, a more efficient alternative is to
take advantage of the inherent parallelism of the GPU using a ‘par-
allel reduction’ algorithm, an iterative method whereby data are
progressively summed in pairs (i.e. computing pair-wise sums,
then sums of pairs, etc.) [40,41]. This approach benefits both per-
formance and accuracy. Large arrays of phase data no longer need
to be copied to the main memory (a slow process due to the lim-
ited bandwidth available) but can be rapidly processed in situ on
the GPU. The total number of summations required for the analysis
of N particles is also greatly reduced, from O(N) in the direct and
Kahan summation algorithms, to O(log2 N) using the parallel
reduction method. Moreover, all addition operations are now be-
tween numbers of similar magnitudes, which significantly reduces
the potential for rounding errors, further improving the accuracy of
the final result.
2.2. Analytical references

For the purposes of validation, we have selected three test cases
for which echo attenuations can be computed analytically. Firstly,
we recall unrestricted diffusion measured by a pulsed-gradient
spin-echo with two trapezoidal gradient pulses having strength G
and length d, ramp time s, and diffusion period D (Fig. 2A). Includ-
ing the correction to the Stejskal–Tanner equation for the finite
ramp times [42], the echo attenuation is:

E ¼ exp �c2G2 ðD� d
3
Þd2 þ 1

30
s3 � 1

6
ds2

� �
D

� �
¼ expð�bDÞ ð4Þ

Secondly, we consider the constant gradient spin-echo of length
T and gradient strength G as shown in Fig. 2B, applied to particles
diffusing between parallel planes separated by length 2a, with
reflecting (no surface relaxation) or absorbing (complete surface
relaxation) boundaries, and where the gradient is applied along
the normal to the planes. This provides an example of restricted
diffusion where the echo attenuation may be evaluated to arbitrary
precision using an expansion of the propagator in the Laplacian
eigenbasis [20]. Echo attenuations can be expressed in terms of



70 C.A. Waudby, J. Christodoulou / Journal of Magnetic Resonance 211 (2011) 67–73
the dimensionless parameters qa and p, where q = cGT/4p is the
wavenumber of the magnetisation grating (i.e. d = T/2), and
p = DT/a2 is a dimensionless diffusion coefficient, expressing the
echo time relative to the expected time to diffuse across distance
a, from the centre of the system to the boundary. Calculations were
carried out in Mathematica 8 (Wolfram Research, Champaign IL),
truncating the expansion after 20 terms in the case of reflecting
boundary conditions. Indistinguishable results were obtained
when the expansion was further truncated to 10 terms, indicating
that the calculation had converged satisfactorily. However, in the
case of absorbing boundary conditions (i.e. surface relaxation)
2000 terms were required to attain the same degree of conver-
gence. The slow convergence in such cases has been noted previ-
ously [20], and provides further impetus for rapid Monte Carlo
simulations.

Finally, we consider unrestricted diffusion in the presence of
uniform flow, where the echo signal acquires a non-zero phase
term, /, which in the short gradient pulse limit is related to the
flow velocity, v:

/ ¼ cdGDv ð5Þ

In this case the imaginary component of Eq. (2) cannot be ne-
glected, but must be calculated in order to compute the phase:

h/i ¼ tan�1 hsin /i
hcos /i

� �
ð6Þ

The echo amplitude is independent of flow (in our case but not
generally, e.g. in the presence of convection [43]) and is deter-
mined by diffusion alone, according to Eq. (4), although the ampli-
tude must now be calculated using both real and imaginary
components of the echo signal (Eq. (2)).
3. Results

3.1. Free diffusion

Observations of free diffusion (D = 10�10 m2 s�1) were simu-
lated using a 25 ms pulsed-gradient spin echo, with trapezoidal
gradients having a 0.1 ms ramp time, a 5 ms pulse length and a
maximum strength of 1 T m�1, under which conditions (bmaxD = 4,
Eq. (4)) a large echo attenuation is expected. Simulations were per-
formed on 220 = 1,048,576 particles with a 10 ls time step, includ-
ing rotation into randomly distributed reference frames to validate
the rotation algorithm. Simulated echo attenuations are plotted in
Fig. 3A and show excellent agreement with the theoretical expec-
tation from Eq. (4).

Residuals between simulation and theory are plotted in Fig. 3B,
also showing 68% confidence intervals (the standard error of the
mean). Within the statistical uncertainty the agreement is nearly
exact. However, when a naive direct summation is used instead
of parallel reduction to compute the phase averages, we observe
systematic errors in the simulation results due to rounding errors
in the single-precision arithmetic (Fig. 3B, red1 curve). Although
small (a maximum error of 0.3%) such errors have the potential to
accumulate unpredictably, particularly should even larger numbers
of trajectories be simulated.

3.2. Diffusion between parallel planes

Simulation conditions were chosen to explore diffusion be-
tween two parallel planes, with reflecting boundaries, across a
range of diffusional regimes from free diffusion and localisation
1 For interpretation of color in Fig. 3, the reader is referred to the web version of
this article.
to motional narrowing, as described by Grebenkov [20]. qa, the
dimensionless gradient strength, was varied from 0 to 2.1, to ex-
plore a range of length scales both greater and smaller than the in-
ter-plane separation. Three simulations were performed with
values of the dimensionless diffusion coefficient, p, varied from
0.64 (free diffusion and localisation) to 64 (motional narrowing).
These choices correspond to the physical parameters
D = 10�9 m2 s�1, 2a = 5 lm, T = 4, 40 and 400 ms, and Gmax = 10, 1
and 0.1 T m�1.

Fig. 3C plots simulated and theoretical attenuations for the
three echo times described above. As for the unrestricted case, sim-
ulations were performed on 220 = 1,048,576 particles with a 4 ls
time step, during which the RMS displacement along one dimen-
sion is

ffiffiffiffiffiffiffiffiffi
2DT
p

¼ 0:09 lm, much smaller than the 5 lm distance be-
tween the planes. Simulation results did not vary with changes in
the step size, indicating that the boundary conditions were ade-
quately implemented. Again, the match between simulation and
theory was excellent, further indicated by the residual plots in
Fig. 3D which show the agreement to be nearly exact within the
statistical uncertainty.

A fourth simulation was also performed to demonstrate and test
the implementation of absorbing boundary conditions (i.e. surface
relaxation), using similar parameters as above, with p = 0.64
(Fig. 3C, orange). A smaller time step of 4 ns, and a greater number
of particles, N = 222 = 4.2 million, were required in order for simu-
lations to converge with a similar level of agreement as for reflect-
ing boundaries, and the total simulation time therefore increased
proportionally (although more detailed theoretical calculations
were also required). The reported uncertainty in the echo attenua-
tion (Eq. (3)) was extended to account for the additional uncer-
tainty, N1=2

alive, in the number of ‘living’ spins, Nalive, and again the
agreement thus achieved with theoretical results was nearly exact
within the statistical uncertainty.

3.3. Free diffusion with uniform flow

Pulsed-field gradient spin-echo experiments were simulated for
free diffusion (D = 10�9 m2 s�1) with uniform flow of velocity, v,
parallel to the applied gradient and varied from 0 to 100 lm s�1.
These parameters were selected such that, under the applied
experimental conditions (D = 0.1 s, d = 2 ms, s = 0.01 ms,
Gmax = 0.4 T m�1) substantial echo attenuations are expected
(bmaxD = 4.5, Eq. (4)). 220 particles were simulated with a time step
of 10 lm, and echo attenuations and echo phases thus obtained are
plotted in Fig. 3E and F alongside theoretical calculations (Eqs. (4)
and (5)). Due to the singularity in Eq. (6) when the phase ap-
proaches ±p/2, or when the total amplitude is small, errors were
propagated by standard Monte Carlo methods. Again, excellent
agreement is observed in all cases, with no large deviations beyond
the statistical uncertainty.

3.4. Performance

Simulation performance was investigated using an Intel Core 2
Quad (2.4 GHz) processor equipped with an NVIDIA GTX 280
graphics processing card. This GPU, a model introduced in June
2008, comprises 240 cores operating at 1.3 GHz, with a theoretical
peak performance of 933 GFLOPS (floating point operations per
second). The CPU has a nominal peak performance of 38.4 GFLOPS,
assuming full utilisation of processing cores and of the single-
instruction multiple-data architecture (SIMD, which allows the
calculation of 4 single-precision operations simultaneously). How-
ever, due to the complexity of writing efficient parallel code for
CPUs (discussed further below) the CPU benchmarks have not
been optimised in these regards, resulting in an effective peak
performance of only 2.4 GFLOPS, 388 times less than the GPU. In



0 1 2 3 4
10-2

10-1

100

bD

Ec
ho

 a
tte

nu
at

io
n

 

 

0 1 2 3 4
−2

−1

0

1

2

3

4

bD

R
es

id
ua

ls
 (s

im
ul

at
io

n 
− 

th
eo

ry
)

 

 

0 0.5 1 1.5 2
10-5

10-4

10-3

10-2

10-1

100

qa

Ec
ho

 a
tte

nu
at

io
n

 

 

0 0.5 1 1.5 2
−5

0

5
x 10-3

qa

R
es

id
ua

ls
 (s

im
ul

at
io

n 
− 

th
eo

ry
)

 

 

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

G / T m−1

Ec
ho

 a
tte

nu
at

io
n

 

 

0 0.1 0.2 0.3 0.4
−2.5

−2

−1.5

−1

−0.5

0

G / T m−1

Ec
ho

 p
ha

se
 / 

ra
d

 

 

0 μm/s
10 μm/s
20 μm/s
50 μm/s
100 μm/s

0 μm/s
10 μm/s
20 μm/s
50 μm/s
100 μm/s
Theory

Simulation
Theory

Parallel reduction
Direct summation

p=0.64
p=6.4
p=64
p=0.64, absorbing

p=0.64
p=6.4
p=64
p=0.64, absorbing

A B

C D

E F

x 10-3

Fig. 3. Validation of the simulation algorithm. (A) Simulated (symbols) and theoretical (line, Eq. (4)) pulsed-gradient echo attenuations for unrestricted diffusion. (B) Residual
plots of the difference between simulation results and theoretical expectations plotted in (A), showing the effect of computing phase averages by parallel reduction and by
direct summation. 68% confidence intervals (standard error of the mean) are shown as shaded regions. (C) Simulated (symbols) and theoretical (line) gradient echo
attenuations for diffusion between parallel planes, with reflecting boundaries except where specified. (D) Residual plots of the difference between simulation results and
theoretical expectations plotted in (C). 68% confidence intervals (standard error of the mean) are shown as shaded regions. (E) Simulated (symbols) and theoretical (line, Eq.
(4)) pulsed-gradient echo attenuations for unrestricted diffusion (D = 10�9 m2 s�1) with uniform flow, with velocities as indicated. (F) Echo phases calculated for the same
simulations (symbols) with theoretical phases (lines) calculated from Eq. (5). Error bars indicate 68% confidence intervals.

C.A. Waudby, J. Christodoulou / Journal of Magnetic Resonance 211 (2011) 67–73 71
principle, with appropriate optimisations, the performance
improvements observed here for the GPU could be reduced up to
16-fold. Nevertheless we believe that the values we report here
will reflect real-life improvements for most users.

Simulations were run of diffusion (D = 10�9 m2 s�1) in a ran-
domly oriented 5 � 200 � 200 lm box with a 4 ls time step over
40 ms (10,000 steps) and 220 = 1,048,576 particles (unless other-
wise varied). For assessment of performance, manual inspection
of the code estimated that each iteration of the diffusion kernel
comprises 67 floating point operations. Operations such as log
and cosine which require multiple operations per invocation have
been accounted for as described by [37], while integer operations
and binary manipulations (bitwise XOR and shift operators re-
quired by the random number generator) have not been included.

Fig. 4A compares the run time for simulations performed on the
GPU and on the CPU. A 325-fold acceleration is observed when the



GPU GPU/CPU CPU
100

101

102

103

104

R
un

 ti
m

e 
/ s

0 200 400 6000

1

2

3

4

Number of threads per block

R
un

 ti
m

e 
/ s

Simulation threads
Reduction threads

0 5000 10000
0

1

2

3

Time steps

R
un

 ti
m

e 
/ s

0 5 10 x 105
0

1

2

3

Number of particles

R
un

 ti
m

e 
/ s

2.7
8.9

2900
A B

C D

Fig. 4. Performance of the simulation algorithm, based on the time required to simulate 1,048,576 particles over 10,000 time steps. (A) Performance of CPU and GPU
compared. GPU/CPU indicates simulations run on the GPU, with phase averages computed on the CPU. (B) Optimisation of the number of threads per block, for both
simulation kernels and parallel reduction kernels. (C) Scaling of simulation run time with the number of time steps. (D) Scaling of simulation run time with the number of
particles.

72 C.A. Waudby, J. Christodoulou / Journal of Magnetic Resonance 211 (2011) 67–73
simulation kernel is executed on the GPU. At this point, perfor-
mance is limited instead by the averaging of phases at the end of
the simulation; when this is also performed on the GPU by parallel
reduction, the final acceleration is by a remarkable three orders of
magnitude.

Performance has little dependence on the number of threads
per block for either simulation or parallel reduction kernels
(Fig. 4B), apart from an increased run time for simulations run with
32 threads per block. At this point, access to gradient profiles
stored in global memory is probably limiting, as not enough
threads are available for the scheduler to hide the latency of global
memory access. Equally, there is no advantage to having more than
64 threads per block, which implies either that peak memory
bandwidth has been reached, or that we have fully hidden the
memory access latency, such that the processor is always doing
useful calculations rather than memory operations. Code profiling
revealed that the utilised memory bandwidth was approximately
8 GB/s, which is substantially less than the hardware limit of
140 GB/s, implying that memory access latency is indeed fully hid-
den by the scheduler.

The run time scales linearly with the number of time steps in
the simulation (Fig. 4C) and with the number of particles
(Fig. 4D). The small offset in Fig. 4C may be attributed to a combi-
nation of initial memory transfers and the final parallel reductions,
both of which are independent of the simulation length, but not
the number of particles as the zero intercept in Fig. 4D indicates.
A calculation time per step of 245 ls may be derived from
Fig. 4C, for the simulation of 220 particles. Given the earlier esti-
mate of 67 floating point operations per particle per step, this indi-
cates a net performance of 290 GFLOPS, or 31% of the nominal peak
performance – without including integer and logical operations.
This is highly satisfactory, and is a strong indicator that the simu-
lation is limited by the GPU performance itself rather than memory
bandwidth, and that the implementation of boundary conditions
has successfully avoided thread serialisation due to branch
divergences.
4. Discussion

In this work, we have demonstrated the implementation of
Monte Carlo simulations of PFG experiments optimised for execu-
tion on GPUs. The simulation algorithms have been validated
against analytical results for free and restricted diffusion, flow,
and surface relaxation, and benchmarking results showed a
1000-fold acceleration when compared to identical code run on a
CPU.

This large acceleration in part reflects how well suited these
‘embarrassingly parallel’ Monte Carlo simulations are to computa-
tion on the GPU, i.e. memory transfers are limited, and no inter-
process communication is necessary. Not all simulation algorithms
would be expected to show comparable improvements: for exam-
ple, should it be required to compute multiple specular reflections
at boundaries, faster performance could potentially be achieved on
CPUs due to their improved ability to handle loops and branches.
As noted earlier, careful optimisation of the CPU reference code
could in principle improve performance up to 16-fold, but even if
this were achieved GPU-based simulations would still have a ca.
20-fold performance advantage. The difference in raw CPU and
GPU performance, i.e. GFLOPS, is indisputable, and continues to
widen at the present time.

The dramatic increase in speed achieved with GPU-based com-
putation opens up new opportunities in the design and analysis of
experiments: taking only a few seconds rather than hours to run,
simulations can be run interactively at the desktop. This may assist
selection of experimental parameters, such as diffusion delays,
pulse lengths and gradient strengths, before experiments are per-
formed. It also becomes practical to couple the simulations to



C.A. Waudby, J. Christodoulou / Journal of Magnetic Resonance 211 (2011) 67–73 73
least-squares or Markov Chain Monte Carlo algorithms, to fit phys-
ical parameters such as diffusion coefficients and pore sizes to
experimental data directly.

A new approach to accelerating Monte Carlo PFG simulations
has recently been described, using a fast random walk algorithm
which continually adapts the length scale to the local geometry
[44]. In that work, it is noted that the algorithm could be paralle-
lised, and therefore could itself be a candidate for GPU-based com-
putation, resulting in even more significant performance gains.
However, the simulation algorithm employed in this work remains
attractive due to its simplicity: the implementation is transparent,
and the microscopic picture of individual spins could be readily
adapted to include additional effects, such as multiple or non-lin-
ear gradients and anisotropic diffusion. Such flexibility will be
important if the approach here is to assist and accelerate the de-
sign, analysis and interpretation of diffusion-weighted MRI data.

Finally, we point out that GPU-accelerated computing remains a
new field – the CUDA library was only introduced at the end of
2006 – and that the number of cores, performance, and program-
mability of GPUs are all increasing rapidly with every new genera-
tion of hardware [27]. Of relevance to the practising NMR
spectroscopist, density functional theory methods have already
been implemented on GPUs [45,46], as have efficient algorithms
for the fast Fourier transform [47], but perhaps the computation-
ally intensive algorithms required for the processing of non-line-
arly sampled data [48–50] may also benefit in the future. As the
technology develops further, the order-of-magnitude performance
gains, as demonstrated in this work, will surely become too great
to ignore.
Acknowledgments

We thank David Fallaize for assistance in setting up the GPU
calculations, and John Kirkpatrick for valuable discussions. CAW
and JC acknowledge support from the BBSRC (9015651/JC) and
from an HFSP Young Investigators Award (RGY67/2007).
References

[1] E. Stejskal, J. Tanner, Spin diffusion measurements: spin echoes in the presence
of a time-dependent field gradient, J. Chem. Phys. 42 (1965) 288–292.

[2] P. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy, first ed.,
Oxford University Press, USA, 1994.

[3] D.S. Grebenkov, NMR survey of reflected Brownian motion, Rev. Mod. Phys. 79
(2007) 1077.

[4] P.N. Sen, Time-dependent diffusion coefficient as a probe of geometry,
Concepts Magn. Reson. 23A (2004) 1–21.

[5] Y.-Q. Song, S. Ryu, P.N. Sen, Determining multiple length scales in rocks, Nature
406 (2000) 178–181.

[6] J. Pfeuffer, U. Flögel, W. Dreher, D. Leibfritz, Restricted diffusion and exchange
of intracellular water: theoretical modelling and diffusion time dependence of
1H NMR measurements on perfused glial cells, NMR Biomed. 11 (1998) 19–31.

[7] E.E. Sigmund, H. Cho, P. Chen, S. Byrnes, Y.-Q. Song, X.E. Guo, et al., Diffusion-
based MR methods for bone structure and evolution, Magn. Reson. Med. 59
(2008) 28–39.

[8] P. Stevenson, A.J. Sederman, M.D. Mantle, X. Li, L.F. Gladden, Measurement of
bubble size distribution in a gas–liquid foam using pulsed-field gradient
nuclear magnetic resonance, J. Colloid Interf. Sci. 352 (2010) 114–120.

[9] P.P. Mitra, P.N. Sen, Effects of microgeometry and surface relaxation on NMR
pulsed-field-gradient experiments: simple pore geometries, Phys. Rev. B 45
(1992) 143.

[10] D. Le Bihan, Looking into the functional architecture of the brain with diffusion
MRI, Nat. Rev. Neurosci. 4 (2003) 469–480.

[11] R. Bammer, S.J. Holdsworth, W.B. Veldhuis, S.T. Skare, New methods in
diffusion-weighted and diffusion tensor imaging, Magn. Reson. Imaging Clin.
N. Am. 17 (2009) 175–204.

[12] J.A. McNab, K.L. Miller, Steady-state diffusion-weighted imaging: theory,
acquisition and analysis, NMR Biomed. 23 (2010) 781–793.

[13] J.C. Gore, J. Xu, D.C. Colvin, T.E. Yankeelov, E.C. Parsons, M.D. Does,
Characterization of tissue structure at varying length scales using temporal
diffusion spectroscopy, NMR Biomed. 23 (2010) 745–756.

[14] J. Kärger, W. Heink, The propagator representation of molecular transport in
microporous crystallites, J. Magn. Reson. (1969) 51 (1983) 1–7.
[15] P. Linse, O. Soderman, The Validity of the short-gradient-pulse approximation
in NMR studies of restricted diffusion. simulations of molecules diffusing
between planes, in cylinders and spheres, J. Magn. Reson., Ser. A 116 (1995)
77–86.

[16] W.S. Price, P. Stilbs, O. Söderman, Determination of pore space shape and size
in porous systems using NMR diffusometry. Beyond the short gradient pulse
approximation, J. Magn. Reson. 160 (2003) 139–143.

[17] C. Malmborg, D. Topgaard, O. Söderman, NMR diffusometry and the short
gradient pulse limit approximation, J. Magn. Reson. 169 (2004) 85–91.

[18] M.D. Hurlimann, K.G. Helmer, T.M. Deswiet, P.N. Sen, Spin echoes in a constant
gradient and in the presence of simple restriction, J. Magn. Reson., Ser. A 113
(1995) 260–264.

[19] J. Stepisnik, Validity limits of Gaussian approximation in cumulant expansion
for diffusion attenuation of spin echo, Physica B 270 (1999) 110–117.

[20] D.S. Grebenkov, Laplacian eigenfunctions in NMR. I. A numerical tool, Concepts
Magn. Reson. Part A 32A (2008) 277–301.

[21] A. Caprihan, L.Z. Wang, E. Fukushima, A multiple-narrow-pulse approximation
for restricted diffusion in a time-varying field gradient, J. Magn. Reson., Ser. A
118 (1996) 94–102.

[22] P.T. Callaghan, A simple matrix formalism for spin echo analysis of restricted
diffusion under generalized gradient waveforms, J. Magn. Reson. 129 (1997)
74–84.

[23] D.S. Grebenkov, Laplacian eigenfunctions in NMR. II. Theoretical advances,
Concepts Magn. Reson. Part A 34A (2009) 264–296.

[24] B. Balinov, B. Jonsson, P. Linse, O. Soderman, The NMR self-diffusion method
applied to restricted diffusion. simulation of echo attenuation from molecules
in spheres and between planes, J. Magn. Reson., Ser. A 104 (1993) 17–25.

[25] A. Duh, A. Mohorič, J. Stepišnik, Computer simulation of the spin-echo spatial
distribution in the case of restricted self-diffusion, J. Magn. Reson. 148 (2001)
257–266.

[26] R.M.E. Valckenborg, H.P. Huinink, J.J. vd Sande, K. Kopinga, Random-walk
simulations of NMR dephasing effects due to uniform magnetic-field gradients
in a pore, Phys. Rev. E 65 (2002) 021306.

[27] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.E. Lefohn, et al., A
survey of general-purpose computation on graphics hardware, Comput.
Graphics Forum 26 (2007) 80–113.

[28] NVIDIA CUDA webpage, <http://www.nvidia.com/object/cuda_home.html>,
2011.

[29] OpenCL webpage, <http://www.khronos.org/opencl/>, 2011.
[30] A.F. Ghoniem, F.S. Sherman, Grid-free simulation of diffusion using random

walk methods, J. Comput. Phys. 61 (1985) 1–37.
[31] G. Drazer, J. Koplik, Tracer dispersion in two-dimensional rough fractures,

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63 (2001) 056104.
[32] P. Kurowski, I. Ippolito, J.P. Hulin, J. Koplik, E.J. Hinch, Anomalous dispersion in

a dipole flow geometry, Phys. Fluids 6 (1994) 108.
[33] P. Szymczak, A.J.C. Ladd, Boundary conditions for stochastic solutions of the

convection-diffusion equation, Phys. Rev. E 68 (2003) 036704.
[34] NVIDIA, CUDA C Programming Guide v3.2, 2010.
[35] D.J. Bergman, K.-J. Dunn, L.M. Schwartz, P.P. Mitra, Self-diffusion in a periodic

porous medium: a comparison of different approaches, Phys. Rev. E 51 (1995)
3393.

[36] G. Marsaglia, Xorshift RNGs, J. Stat. Softw. 8 (2003) 1–6.
[37] M. Januszewski, M. Kostur, Accelerating numerical solution of stochastic

differential equations with CUDA, Comput. Phys. Commun. 181 (2010) 183–
188.

[38] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes,
third ed. The Art of Scientific Computing, Cambridge University Press, 2007.

[39] W. Kahan, Further remarks on reducing truncation errors, Commun. ACM 8
(1965) 40.

[40] W.D. Hillis, J. Steele, Data parallel algorithms, Commun. ACM 29 (1986) 1170–
1183.

[41] G. Blelloch, Vector Models for Data-Parallel Computing, MIT Press, Cambridge,
MA, 1990.

[42] J. Mattiello, P.J. Basser, D. Lebihan, Analytical expressions for the b matrix in
NMR diffusion imaging and spectroscopy, J. Magn. Reson., Ser. A 108 (1994)
131–141.

[43] N. Hedin, T.Y. Yu, I. Furó, Growth of C12E8 micelles with increasing
temperature. a convection-compensated pgse nmr study, Langmuir 16
(2000) 7548–7550.

[44] D.S. Grebenkov, A fast random walk algorithm for computing the pulsed-
gradient spin-echo signal in multiscale porous media, J. Magn. Reson. (2010).

[45] I.S. Ufimtsev, T.J. Martinez, Graphical processing units for quantum chemistry,
Computing Sci. Eng. 10 (2008) 26–34.

[46] K. Yasuda, Accelerating density functional calculations with graphics
processing unit, J. Chem. Theory Comput. 4 (2008) 1230–1236.

[47] K. Moreland, E. Angel, The FFT on a GPU, SIGGRAPH/Eurographics Workshop
on Graphics Hardware 2003 Proceedings (2003) 112–119.

[48] K. Kazimierczuk, J. Stanek, A. Zawadzka-Kazimierczuk, W. Kozminski, Random
sampling in multidimensional NMR spectroscopy, Prog. Nucl. Magn. Reson.
Spectrosc. 57 (2010) 420–434.

[49] V. Jaravine, I. Ibraghimov, V.Y. Orekhov, Removal of a time barrier for high-
resolution multidimensional NMR spectroscopy, Nat. Methods 3 (2006) 605–
607.

[50] V.A. Jaravine, A.V. Zhuravleva, P. Permi, I. Ibraghimov, V.Y. Orekhov,
Hyperdimensional NMR spectroscopy with nonlinear sampling, J. Am. Chem.
Soc. 130 (2008) 3927–3936.

http://www.nvidia.com/object/cuda_home.html
http://www.khronos.org/opencl/

	GPU accelerated Monte Carlo simulation of pulsed-field gradient NMR experiments
	1 Introduction
	2 Implementation
	2.1 Numerical precision and stability
	2.2 Analytical references

	3 Results
	3.1 Free diffusion
	3.2 Diffusion between parallel planes
	3.3 Free diffusion with uniform flow
	3.4 Performance

	4 Discussion
	Acknowledgments
	References


